Skip to main content
  1. Data Science Blog/

Generalized AI Model for Prediction

·1040 words·5 mins· loading · ·
Artificial Intelligence (AI) Machine Learning (ML) AI/ML Models Machine Learning Models Machine Learning Concepts
Share with :

Generalized AI Model for Prediction

Can we really Develop AI solutions that can predict human behavior? If you are not a technical person then don’t get overwhelmed by the next paragraph, you can read further, and it will make sense to you.

We know the basic equation, y = mx + c. This comes from algebra and trigonometry. Here, y is the predicted value, and x is the input. The x can be a simple scalar value or a vector. Similarly, m is the coefficient in this equation, and it can be a simple scalar value or a vector. If m or x is a vector, then it can hold multiple values. The value of m corresponding to x is also called slope in trigonometry. If a plane is 2 dimensional, then you have one m and one x. But if a plane is complex, and it has, let us say, 10 dimensions then it has 9 m and 9 x. 10th dimensions is predicted by these 9 m and 9 x, using the earlier formula. How that multiplication happens is easy for those who know vector and matrix multiplication, but for others, it is really complicated. So, you can leave it for the time being.

In the above equation, y maybe your happiness which can be predicted by X vector which includes your health, money you have, relationship, children’s health, quality of work, etc. The “Y” can also be how much money you will make, which depends upon X vector, which includes how much hard work you can do, your education, your skills, work you do, your workplace, your age, your attitude, etc. No matter how long is your X vector or how many features are there in X we cannot predict y accurately. Why? Because every human is different, and no model cannot predict 100% about human life. By including more quality features in the X vector, you can improve the performance of the model, but no model can predict 100%.

Prediction is good for business, either you use AI or astrologers, does not matter. But if someone can predict your next move, you feel most frustrated. As an individual, you do everything to defy that prediction. Especially if you know somebody is getting benefited by predicting you correct.

Whether your AI product is about classification, regression, clustering, or generation, you are trying to play with a similar concept as mentioned in the earlier equation (keeping it simple for non-technical, non-math readers)

Whether YouTube recommends you some show, or Netflix recommends you some movie, or Amazon recommends you some product. Either a model predicts some disease or a model predicts the price of some product, everywhere m and x are used for prediction, recommendation, classification, or generation purposes.

What is X? If Amazon wants to recommend you something then X is product name, product category, price, number of units, gender, delivery location, billing location, date of order, day of order etc. If a model is predicting cancer from an X-ray, then X is the pixel value of every pixel of the x-ray. Model form cluster on the image and detect different regions, intensity, etc. Based on the intensity, area of a spotted region, location of the spot, etc. AI model predicts disease. If your model is predicting a loan should be granted or not then X can be age, gender, income, job title, education, location, credit rating, etc. During the model training, the model learns m corresponding to the x.

Normalization of each value of X and y is important for creating a good prediction model. For normalization, we take the help of statistics or use different libraries of the programming language we are using to build the model.

If you take an Amazon dataset, there are hundreds of features that make vector X. Using those hundreds of values in X, we train our model. No model can predict 100%. Why? Because you cannot capture all the attribute which defines human behavior of every human perfectly.

To address this accuracy problem, we use a different set of parameters or X (features) and create different models. These models may be for predicting a specific product category, say electronics. They may predict for a specific geography, say Mumbai or Bangalore or India. They may predict for a specific age group, or they may predict for a specific gender. But using the same data why do we create different models for different age groups, product categories, geography, etc? Because 1- it is impossible to build a generic model, 2- we don’t have enough variables which predict human behavior, 3- we can never collect all the X (features). So creating an exhausting dataset that represents every aspect of human behavior is impossible. So segmentation helps.

Data scientists pay special attention to selecting features to develop a model which can have the highest possible performance. The model performance also depends upon the choice of algorithm, hyperparameter tuning, the architecture used (in the case of neural network) but it is heavily affected by the X (features) available for training.

Trying to develop a multi-modal is worth because it tries to integrate all kind of inputs text, audio, image, video from the source and then predict. But trying to build a multilingual, multi-script, multi-modal, multi-domain is extremely challenging.

In physics, physicists are looking for a theory of everything or an equation that can explain everything. The problem there is nature behaves differently at classical and quite differently at the quantum level. Some day physics may succeed because they are dealing with the predictive nature of existence. Nature is not unpredictable. In the absence of a definition, it may look unpredictable or undefinable.

In the world of data science, data scientists are trying to build a model to predict everything. For this, they are trying to develop a generalized, multi-modal model. But that is impossible to build. Using certain features (X) we can develop a problem-specific, domain-specific, language-specific model but not a generic model.

What is your thought about the generalized, multi-modal model? A problem in the realm of physics is less complicated but hugely complicated in the field of data science. Why? Because physics is dealing with nature and data science is dealing with humans, their behavior, and their businesses.

Dr. Hari Thapliyaal's avatar

Dr. Hari Thapliyaal

Dr. Hari Thapliyal is a seasoned professional and prolific blogger with a multifaceted background that spans the realms of Data Science, Project Management, and Advait-Vedanta Philosophy. Holding a Doctorate in AI/NLP from SSBM (Geneva, Switzerland), Hari has earned Master's degrees in Computers, Business Management, Data Science, and Economics, reflecting his dedication to continuous learning and a diverse skill set. With over three decades of experience in management and leadership, Hari has proven expertise in training, consulting, and coaching within the technology sector. His extensive 16+ years in all phases of software product development are complemented by a decade-long focus on course design, training, coaching, and consulting in Project Management. In the dynamic field of Data Science, Hari stands out with more than three years of hands-on experience in software development, training course development, training, and mentoring professionals. His areas of specialization include Data Science, AI, Computer Vision, NLP, complex machine learning algorithms, statistical modeling, pattern identification, and extraction of valuable insights. Hari's professional journey showcases his diverse experience in planning and executing multiple types of projects. He excels in driving stakeholders to identify and resolve business problems, consistently delivering excellent results. Beyond the professional sphere, Hari finds solace in long meditation, often seeking secluded places or immersing himself in the embrace of nature.

Comments:

Share with :

Related

Roadmap to Reality
·990 words·5 mins· loading
Philosophy & Cognitive Science Interdisciplinary Topics Scientific Journey Self-Discovery Personal Growth Cosmic Perspective Human Evolution Technology Biology Neuroscience
Roadmap to Reality # A Scientific Journey to Know the Universe — and the Self # 🌱 Introduction: The …
From Being Hacked to Being Reborn: How I Rebuilt My LinkedIn Identity in 48 Hours
·893 words·5 mins· loading
Personal Branding Cybersecurity Technology Trends & Future Personal Branding LinkedIn Profile Professional Identity Cybersecurity Online Presence Digital Identity Online Branding
💔 From Being Hacked to Being Reborn: How I Rebuilt My LinkedIn Identity in 48 Hours # “In …
Exploring CSS Frameworks - A Collection of Lightweight, Responsive, and Themeable Alternatives
·1378 words·7 mins· loading
Web Development Frontend Development Design Systems CSS Frameworks Lightweight CSS Responsive CSS Themeable CSS CSS Utilities Utility-First CSS
Exploring CSS Frameworks # There are many CSS frameworks and approaches you can use besides …
Dimensions of Software Architecture: Balancing Concerns
·873 words·5 mins· loading
Software Architecture Software Architecture Technical Debt Maintainability Scalability Performance
Dimensions of Software Architecture # Call these “Architectural Concern Categories” or …
Understanding `async`, `await`, and Concurrency in Python
·616 words·3 mins· loading
Python Asyncio Concurrency Synchronous Programming Asynchronous Programming
Understanding async, await, and Concurrency # Understanding async, await, and Concurrency in Python …